过去
LED 业者为了获得充分的
白光LED 光束,曾经开发大尺寸
LED芯片 试图藉此方式达到预期目标。不过,实际上白光LED的施加电力持续超过1W以上时光束反而会下降,发
光效率相对降低20~30%.换句话说,白光LED的
亮度如果要比传统LED大数倍,消耗电力特性超越荧光灯的话,就必需克服下列四大课题:抑制温升、确保使用寿命、改善发光效率,以及发光特性均等化。
温升问题的解决方法是降低封装的热阻抗;维持LED的使用寿命的方法是改善芯片外形、采用小型芯片;改善LED的发光效率的方法是改善芯片结构、采用小型芯片;至于发光特性均匀化的方法是改善LED的封装方法,这些方法已经陆续被开发中。
解决封装的散热问题才是根本方法 由于增加电力反而会造成封装的热阻抗急剧降至10K/W以下,因此国外业者曾经开发耐高温白光LED,试图藉此改善上述问题。然而,实际上
大功率LED 的发热量比小
功率 LED高数十倍以上,而且温升还会使发光效率大幅下跌。即使封装技术允许高热量,不过LED芯片的接合温度却有可能超过容许值,最后业者终于领悟到解决封装的散热问题才是根本方法。
有关LED的使用寿命,例如改用硅质封装材料与陶瓷封装材料,能使LED的使用寿命提高一位数,尤其是白光LED的发光频谱含有波长低于450nm短波长光线,传统环氧树脂封装材料极易被短波长光线破坏,高功率白光LED的大光量更加速封装材料的劣化,根据业者
测试 结果
显示 连续点灯不到一万小时,高功率白光LED的亮度已经降低一半以上,根本无法满足照明光源长寿命的基本要求。
有关LED的发光效率,改善芯片结构与封装结构,都可以达到与低功率白光LED相同水平。主要原因是电流密度提高2倍以上时,不但不容易从大型芯片取出光线,结果反而会造成发光效率不如低功率白光LED的窘境。如果改善芯片的电极构造,理论上就可以解决上述取光问题。
设法减少热阻抗、改善散热问题 有关发光特性均匀性,一般认为只要改善白光LED的荧光体材料浓度均匀性与荧光体的制作技术,应该可以克服上述困扰。如上所述提高施加电力的同时,必需设法减少热阻抗、改善散热问题。具体内容分别是:降低芯片到封装的热阻抗、抑制封装至印刷电路基板的热阻抗、提高芯片的散热顺畅性。