
去探测G极的电压,发现电压波形如下:
G极的电压居然有4V多,难怪MOSFET会导通,这是因为MOSFET的寄生参数在捣鬼。
在GS之间并一个电阻.那么仿真的结果呢:
几乎为0V.
驱动电阻的作用,如果你的驱动走线很长,驱动电阻可以对走线电感和MOS结电容引起的震荡起阻尼作用。但是通常,现在的PCB走线都很紧凑,走线电感非常小。
红色波形为R3=1欧姆,绿色为R3=100欧姆。可以看到,当R3比较大时,驱动就有点力不从心了,特别在处理米勒效应的时候,驱动电压上升很缓慢。
同样标称7A的mos,不同的厂家,不同的器件,参数是不一样的。所以没有什么公式可以去计算。
红色的是R3=1欧姆,绿色的是R3=100欧姆。可见R3越大,MOS的导通速度越慢。
红色的是R3=1欧姆,绿色的是R3=100欧姆。可见R3越大,MOS的导通速度越慢。
红色的是R3=1欧姆,绿色的是R3=100欧姆。可见,驱动电阻大的时候,高频谐波明显变小。
红色的是R3=1欧姆,绿色的是R3=100欧姆。可见,驱动电阻大的时候,损耗明显大了。
MOSFET的自举驱动.
加入输入12V,MOS的导通阀值为3V,那么对于Q1来说,当Q1导通之后,如果要维持导通状态,Q1的G级必须保证15V以上的电压,因为S级已经有12V了。
Cboot是挂在boot和LX之间的,而LX却是下管的D级,当下管导通的时候,LX接地,芯片的内部基准通过Dboot(自举二极管)对Cboot充电。当下管关,上管通的时候,LX点的电压上升,Cboot上的电压自然就被举了起来。这样驱动电压才能高过输入电压。
其核心的东西,就是红圈里的boot二极管,和Level shift电路ISL21XX驱动桥式电路示意图:
驱动双管电路:
驱动有源钳位示意图:
当然以上都是示意图,没有完整的外围电路,但是外围其实很简单,参考datasheet即可。
驱动双管电路:
驱动有源钳位示意图:
当然以上都是示意图,没有完整的外围电路,但是外围其实很简单,参考datasheet即可。
其实MOS只是作为开关管,需要注意的是电机是感性器件,还有电机启动时候的冲击电流。还有堵转时候的的启动电流。
红色波形为驱动源V1的输出,绿色为Q1的G级波形。可以看到,Q1-G的波形为具有正负电压的方波,幅值6V了。
其平均电压为6V,但是峰峰值,却有2V,显然C1不够大,导致驱动信号最终不够平。那么把C1变为470n。Q1-G的电压波形就变成如下:
驱动电压变得平缓了些。如果把驱动变压器的电感量增加到500uH。驱动信号就如下图:
驱动信号显得更为平缓。
发现驱动到达MOS的时候,正压不到2V了。显然这种驱动不适合占空比大的情况。
可见,在驱动突然关掉之后,C1上的能量,会引起驱动变的电感,C1以及mos的结电容之间的谐振。如果这个谐振电压足够高的话,就会触发MOS,对可靠性带来危害。
但是这个电阻会给驱动带来额外的损耗。如何传递大占空比的驱动:看一个简单的驱动电路。
当D=0.9的时候
红色波形为驱动源输出,绿色为到达MOS的波形。基本保持了驱动源的波形。
而且似乎这个问题比上面的电路还严重。下面尝试降低这个震荡,首先把R5改为1K
确实有改善,但问题还是严重,继续在C2上并一个1K的电阻。
绿色的波形,确实更改善了一些,但是问题还是存在。这是个可靠性的隐患。
可看到,驱动信号在关机的时候,没有了上面的那些震荡。
采用一拖二的方式,可以来驱动两个管子。
通过变压器传递之后,到达MOS会变成如下:
波形如下图: